Inversa del producto de matrices
En álgebra lineal, el adjunto o adyacente clásico de una matriz cuadrada A es el transpuesto de su matriz cofactora y se denota por adj(A).[1][2] También se conoce ocasionalmente como matriz adjunta,[3][4] o “adjunto”,[5] aunque este último término hoy en día normalmente se refiere a un concepto diferente, el operador adjunto que para una matriz es el transpuesto conjugado.
Para más detalle, supongamos que R es un anillo unital conmutativo y A es una matriz n × n con entradas de R. El (i, j)-minor de A, denotado Mij, es el determinante de la matriz (n – 1) × (n – 1) que resulta de borrar la fila i y la columna j de A. La matriz cofactora de A es la matriz n × n C cuya entrada (i, j) es el (i, j) cofactor de A, que es el (i, j)-minor multiplicado por un factor de signo:
El -1 de la segunda fila, tercera columna del adjugado se calculó como sigue. La entrada (2,3) del adjunto es el cofactor (3,2) de A. Este cofactor se calcula utilizando la submatriz obtenida al eliminar la tercera fila y la segunda columna de la matriz original A,
¿Cuál es la fórmula del adjunto de una matriz?
El adjunto de una matriz cuadrada A = [aij]n×n se define como el transpuesto de la matriz [Aij]n×n , donde Aij es el cofactor del elemento aij.
¿Qué es el adjunto de una matriz de 2×2?
¿Qué es el adjunto de una matriz de 2×2? El adjunto de una matriz de 2×2 es el transpuesto de su matriz de cofactores. Para ello, determinamos el cofactor de cada elemento de la matriz y, a continuación, hallamos el transpuesto de la matriz de cofactores.
¿Cuál es la fórmula del adjunto adjunto A?
adj (adj A) = |A|^n – 2 A | Preguntas de matemáticas.
Método adjunto de la matriz inversa
El adjunto de una matriz es el transpuesto de la matriz de sus cofactores. En primer lugar, determinamos el cofactor de cada elemento de la matriz. A continuación, formamos la matriz de cofactores con ellos. Por último, tomamos el transpuesto de la matriz cofactora para obtener la matriz adjunta.
La matriz adjunta se utiliza para determinar la inversa de una matriz dada. El producto de la matriz adjunta por una matriz dada da la matriz cuyas entradas diagonales son el determinante de la matriz dada y 0 en el resto.
Una matriz es una matriz rectangular de {eq}mn {/eq} números dispuestos en forma de {eq}m {/eq} filas y {eq}n {/eq} columnas. Se dice que una matriz de este tipo tiene un orden {eq}m\ veces n {/eq}. Cuando {eq}m=n {/eq} las llamamos matrices cuadradas. Las entradas de una matriz vienen dadas por {eq}a_{ij} {/eq} donde {eq}ij {/eq} representa la posición de la entrada en el arreglo.La matriz adjunta o matriz adjoint es la matriz formada transponiendo las filas y columnas de la matriz de cofactores. La palabra adjunto se utiliza ahora menos en nomenclatura, ya que también puede significar el operador adjunto. La matriz adjunta para una matriz dada {eq}A {/eq} se denota como {eq}Adj(A) {/eq}.
Matriz conjugada
El adjunto de una matriz es el transpuesto de la matriz de sus cofactores. En primer lugar, determinamos el cofactor de cada elemento de la matriz. A continuación, formamos la matriz de cofactores con ellos. Por último, tomamos el transpuesto de la matriz cofactora para obtener la matriz adjunta.
La matriz adjunta se utiliza para determinar la inversa de una matriz dada. El producto de la matriz adjunta por una matriz dada da la matriz cuyas entradas diagonales son el determinante de la matriz dada y 0 en el resto.
Una matriz es una matriz rectangular de {eq}mn {/eq} números dispuestos en forma de {eq}m {/eq} filas y {eq}n {/eq} columnas. Se dice que una matriz de este tipo tiene un orden {eq}m\ veces n {/eq}. Cuando {eq}m=n {/eq} las llamamos matrices cuadradas. Las entradas de una matriz vienen dadas por {eq}a_{ij} {/eq} donde {eq}ij {/eq} representa la posición de la entrada en el arreglo.La matriz adjunta o matriz adjoint es la matriz formada transponiendo las filas y columnas de la matriz de cofactores. La palabra adjunto se utiliza ahora menos en nomenclatura, ya que también puede significar el operador adjunto. La matriz adjunta para una matriz dada {eq}A {/eq} se denota como {eq}Adj(A) {/eq}.
Determinante del adjunto
En primer lugar, ten en cuenta que lo que aquí llamamos matriz adyacente a veces se denomina matriz adjunta. También puedes encontrarte con el término matriz adjunta clásica. Esta confusión se debe a que, en algunos contextos, el término adjunto puede significar la transpuesta conjugada de una matriz, que es algo totalmente distinto de lo que consideramos aquí. Mezclaremos libremente los términos adjunto y conjugado para que puedas acostumbrarte rápidamente a ambos.
El adjunto de la matriz A se suele denotar por adj(A). Si ya estás familiarizado con la noción de matriz cofactora, entonces te habrás dado cuenta de que adj(A) es, de hecho, la transpuesta de la matriz cofactora de A. Descubre más con la calculadora de matrices cofactoras de Omni.Adjugado de una matriz 2×2
Veamos cómo funciona la fórmula de la matriz adjunta explicada anteriormente en el caso más sencillo. Concretamente, la utilizaremos para hallar el adyugado de una matriz de 2×2. Considere la siguiente matriz:[abcd]\small \quad \bbegin{bmatrix}
No dejes que el caso de 2 x 2 te lleve a engaño: calcular matrices adjuntas a mano puede llevar mucho tiempo ⌛⌛ – especialmente si tenemos que tratar con matrices grandes. Afortunadamente, ¡nuestra calculadora de matrices adjuntas puede hacer todo este trabajo por ti! Estos son los pasos que debes seguir para utilizar la calculadora de matrices adjuntas de forma eficiente: