Inversa de una matriz 2×2 adjunta

Matriz menor 2×2

Dada una matriz cuadrada, hallar la adyacente y la inversa de la matriz. Para ello, le recomendamos encarecidamente que consulte lo siguiente como requisito previo. Determinante de una MatrizAdjunta (o Adjugada) de una matriz es la matriz obtenida tomando la transpuesta de la matriz cofactor de una matriz cuadrada dada se llama su matriz Adjunta o Adjugada. La Adjunta de cualquier matriz cuadrada ‘A’ (digamos) se representa como Adj(A). Ejemplo: El siguiente ejemplo y su explicación se han tomado de aquí.

c) Coloque el cofactor en adj[j][i]¿Cómo encontrar inversa? Inversa de una matriz sólo existe si la matriz es no singular es decir, determinante no debe ser 0. Usando determinante y adjunto, podemos encontrar fácilmente la inversa de una matriz cuadrada utilizando la siguiente fórmula, Si det(A) != 0

MejorasEste artículo está siendo mejorado por otro usuario. Puedes sugerir los cambios por ahora y estarán en la pestaña de discusión del artículo. Se te notificará por correo electrónico una vez que el artículo esté disponible para su mejora.

¿Qué es el adjunto y el inverso de una matriz?

El adjunto de una matriz, también llamado adjugado de una matriz, se define como el transpuesto de la matriz cofactora de esa matriz en particular. Para una matriz A, el adjunto se denota como adj (A). Por otro lado, la inversa de una matriz A es aquella matriz que, cuando se multiplica por la matriz A, da una matriz identidad.

¿Cómo hallar la inversa de una matriz 2×2 mediante operaciones elementales con filas?

Inversa de una matriz de 2×2 mediante operaciones elementales con filas

Si A es una matriz tal que A-1 existe, entonces para encontrar la inversa de A, es decir, A-1 utilizando operaciones elementales de fila, escriba A = IA y aplique una secuencia de operaciones de fila en A = IA hasta que obtengamos I = BA. La matriz B será la inversa de A.

  Ejercicios inversa de una matriz adjunta

Inversa de matriz no cuadrada

Este artículo ha sido escrito por Mario Banuelos, PhD. Mario Banuelos es Profesor Asistente de Matemáticas en la Universidad Estatal de California, Fresno. Con más de ocho años de experiencia docente, Mario está especializado en biología matemática, optimización, modelos estadísticos para la evolución del genoma y ciencia de datos. Mario es licenciado en Matemáticas por la Universidad Estatal de California, Fresno, y doctor en Matemáticas Aplicadas por la Universidad de California, Merced. Mario ha impartido clases en institutos y universidades.

¿Te cuesta resolver un problema de álgebra? Encontrar la inversa de una matriz es clave para resolver sistemas de ecuaciones lineales. Además, las operaciones inversas permiten simplificar problemas difíciles en general. Por ejemplo, si un problema te pide que dividas por una fracción, puedes multiplicar más fácilmente por su recíproco. Es una operación inversa básica. Del mismo modo, como no hay operador de división para matrices, tienes que multiplicar por la matriz inversa. Hemos preparado una guía paso a paso para calcular la inversa de una matriz de 3×3 a mano, utilizando determinantes y reducción lineal de filas. Además, te enseñaremos a encontrar la inversa con una calculadora gráfica avanzada.

Inversa de una matriz

En álgebra lineal, el adjunto o adyacente clásico de una matriz cuadrada A es el transpuesto de su matriz cofactora y se denota por adj(A).[1][2] También se conoce ocasionalmente como matriz adjunta,[3][4] o “adjunto”,[5] aunque este último término hoy en día normalmente se refiere a un concepto diferente, el operador adjunto que para una matriz es el transpuesto conjugado.

  Inversa por determinantes y adjuntos

Para más detalle, supongamos que R es un anillo unital conmutativo y A es una matriz n × n con entradas de R. El (i, j)-minor de A, denotado Mij, es el determinante de la matriz (n – 1) × (n – 1) que resulta de borrar la fila i y la columna j de A. La matriz cofactora de A es la matriz n × n C cuya entrada (i, j) es el (i, j) cofactor de A, que es el (i, j)-minor multiplicado por un factor de signo:

El -1 de la segunda fila, tercera columna del adjugado se calculó como sigue. La entrada (2,3) del adjunto es el cofactor (3,2) de A. Este cofactor se calcula utilizando la submatriz obtenida al eliminar la tercera fila y la segunda columna de la matriz original A,

Matriz adjunta

Antes de ver cómo hallar la inversa de una matriz de 2×2, recordemos el significado de inversa. En general, la inversa de un número real es un número que cuando se multiplica por el número dado resulta en la identidad multiplicativa, que es 1. En matrices, la inversa de una matriz A (que se denota por A-1) es una matriz que cuando se multiplica por A da la matriz identidad, I. es decir, AA-1 = A-1A = I. Pero, ¿cómo encontrar la inversa de una matriz 2×2?

La inversa de una matriz de 2×2, digamos A, es una matriz del mismo orden denotada por A-1 tal que AA-1 = A-1A = I, donde I es la matriz identidad de orden 2×2. es decir, I = \(\left[\begin{array}{rr}1 & 0 \\\ 0 & 1 \end{array}\right]\). En general, la inversa de una matriz A se encuentra utilizando la fórmula (adj A)/(det A), donde “adj A” es el “adjunto de A” y “det A” es el “determinante de A”. Pero en el caso de una matriz de 2×2 A = \(\left[\begin{array}{rr}a & b \\\ c & d \end{array}\right]\), podemos encontrar la inversa directamente utilizando la siguiente fórmula.

  Inversa de un determinandte por adjunto

La fórmula de la inversa de una matriz de 2×2 utiliza el determinante de la matriz. Sabemos que el determinante de una matriz de 2×2 A = \(\left[\begin{array}{rr}a & b \\\\ c & d \end{array}\right]\) es det(A) = ad – bc. es decir, para encontrar el determinante, simplemente multiplicamos los elementos de cada una de las dos diagonales y restamos (el producto de los elementos de la diagonal principal es el minuendo).

Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos y para mostrarte publicidad relacionada con sus preferencias en base a un perfil elaborado a partir de tus hábitos de navegación. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad