Matriz inversa
El adjunto de una matriz es uno de los métodos más sencillos para calcular la inversa de una matriz. Matriz adjunta es otro término utilizado para referirse a la matriz adjunta en álgebra lineal. Una matriz adjunta es especialmente útil en aplicaciones en las que no se puede utilizar directamente una matriz inversa.
El adjunto de una matriz se obtiene tomando la transpuesta de los elementos cofactores de la matriz dada. En este artículo, vamos a aprender sobre el adjunto de una matriz, su definición, propiedades con ejemplos resueltos.
El adjunto de una matriz B es la transposición de la matriz cofactor de B. El adjunto de una matriz cuadrada B se denota por adj B. Sea B = [\(b_{ij}\)] una matriz cuadrada de orden n. Los tres pasos importantes para encontrar el adjunto de una matriz son:
El adjunto adj(B) de una matriz cuadrada B de orden n x n, puede definirse como el transpuesto de la matriz cofactora. Consideremos la matriz B de 2×2 con los elementos \(b_{11}, b_{12}, b_{21}, b_{22}\), y sus elementos cofactores son \(B_{11}, B_{12}, B_{21}, B_{22}\) respectivamente. A continuación, el adjunto de la fórmula de la matriz es la siguiente:
¿Cómo se halla la matriz contigua?
El adjunto de una matriz cuadrada A = [aij]n×n se define como el transpuesto de la matriz [Aij]n×n , donde Aij es el cofactor del elemento aij. En otras palabras, la transposición de una matriz cofactora de la matriz cuadrada se denomina adjunto de la matriz. El adjunto de la matriz A se denota por adj A.
¿Qué es la contigüidad de matriz?
El adjunto de una matriz (también llamado adjugado de una matriz) se define como el transpuesto de la matriz cofactora de esa matriz en particular. Para una matriz A, el adjunto se denota como adj (A). Por otro lado, la inversa de una matriz A es aquella matriz que al multiplicarse por la matriz A da una matriz identidad.
Calculadora de matrices conjugadas
En este explicador, vamos a aprender a encontrar la inversa de matrices de 3×3 utilizando el método adjunto.Comencemos recordando cómo definir la inversa de una matriz de 2×2.Definición: Inversa de una matriz de 2 × 2Sea una matriz de 2×2. La inversa de (denotada por
Además, es posible obtener una fórmula exacta para la inversa, que es la siguiente.Fórmula: Inversa de una matriz de 2 × 2Déjese = tal que det()≠0, donde det()=- es el determinante de . Entonces la
Como veremos en este artículo, existe una fórmula para la inversa de una matriz que generaliza el caso de 2 × 2. En particular, para hallar el determinante y la inversa de una matriz de 2 × 2 hay que aplicar la fórmula de la inversa. En concreto, hallar el determinante y los pasos que hay que dar para ello son un componente
esencial para hallar la inversa de una matriz utilizando el método adjunto.Antes de explicar adecuadamente el método adjunto para hallar la inversa, necesitamos definir las matrices cofactoras.Definición: Matriz cofactoraLa matriz cofactora de una matriz cuadrada =() se define por
Matriz inversa 2×2
Teorema H. Una matriz cuadrada A es invertible si y sólo si su determinante es distinto de cero, y su inversa se obtiene multiplicando el adjunto de A por (det A) -1. [Nota: Una matriz cuyo determinante es 0 se dice singular; por tanto, es no singular]. [Nota: Una matriz cuyo determinante es 0 se dice que es singular; por lo tanto, una matriz es invertible si y sólo si es no singular].
donde n es el tamaño de la matriz cuadrada A. Si n = 2, entonces (det A) n-2 = (det A) 0 = 1-ya que det A ≠ 0-lo que implica Adj (Adj A) = A, como se desea. Sin embargo, si n > 2, entonces (det A) n-2 no será igual a 1 para cada valor distinto de cero de det A, por lo que Adj (Adj A) no será necesariamente igual a A. Sin embargo, esta prueba muestra que cualquiera que sea el tamaño de la matriz, Adj (Adj A) será igual a A si det A = 1.
Ejemplo 5: Consideremos el espacio vectorial C 2( a, b) de funciones que tienen una segunda derivada continua en el intervalo ( a, b) ⊂ R. Si f, g, y h son funciones en este espacio, entonces el siguiente determinante,
Las funciones f, g y h son linealmente independientes si los únicos escalares c 1, c 2 y c 3 que satisfacen la ecuación son c 1 = c 2 = c 3 = 0. Una forma de obtener tres ecuaciones para resolver las tres incógnitas c 1, c 2 y c 3 es diferenciar (*) y luego volver a diferenciarla. El resultado es el sistema
Matriz de cofactores
Las opciones del constructor proporcionan información adicional (sólo lectura, forma, almacenamiento, orden, tipo de datos y atributos) al constructor Matrix que construye el resultado. Estas opciones también pueden proporcionarse en la forma outputoptions=, donde representa una lista Maple. Si se proporciona una opción de constructor tanto en la secuencia de llamada directamente como en una opción outputoptions, esta última tiene preferencia (independientemente del orden).
Esta función forma parte del paquete LinearAlgebra, por lo que puede utilizarse en la forma Adjoint(..) sólo después de ejecutar el comando with(LinearAlgebra). Sin embargo, siempre se puede acceder a ella a través de la forma larga del comando utilizando LinearAlgebra[Adjoint](..).