Adjunto de una matriz 2×2
El adjunto de una matriz es uno de los métodos más sencillos para calcular la inversa de una matriz. Matriz adjunta es otro término utilizado para referirse a la matriz adjunta en álgebra lineal. Una matriz adjunta es especialmente útil en aplicaciones en las que no se puede utilizar directamente una matriz inversa.
El adjunto de una matriz se obtiene tomando la transpuesta de los elementos cofactores de la matriz dada. En este artículo, vamos a aprender sobre el adjunto de una matriz, su definición, propiedades con ejemplos resueltos.
El adjunto de una matriz B es la transposición de la matriz cofactor de B. El adjunto de una matriz cuadrada B se denota por adj B. Sea B = [\(b_{ij}\)] una matriz cuadrada de orden n. Los tres pasos importantes para encontrar el adjunto de una matriz son:
El adjunto adj(B) de una matriz cuadrada B de orden n x n, puede definirse como el transpuesto de la matriz cofactora. Consideremos la matriz B de 2×2 con los elementos \(b_{11}, b_{12}, b_{21}, b_{22}\), y sus elementos cofactores son \(B_{11}, B_{12}, B_{21}, B_{22}\) respectivamente. A continuación, el adjunto de la fórmula de la matriz es la siguiente:
Matriz adjunta 3×3
El adjunto de una matriz es el transpuesto de la matriz de sus cofactores. Primero, determinamos el cofactor de cada elemento de la matriz. A continuación, formamos la matriz de cofactores con ellos. Por último, tomamos el transpuesto de la matriz cofactora para obtener la matriz adjunta.
La matriz adjunta se utiliza para determinar la inversa de una matriz dada. El producto de la matriz adjunta con una matriz dada da la matriz cuyas entradas diagonales son el determinante de la matriz dada y 0 en el resto.
Una matriz es una matriz rectangular de {eq}mn {/eq} números dispuestos en forma de {eq}m {/eq} filas y {eq}n {/eq} columnas. Se dice que una matriz de este tipo tiene un orden {eq}m\ veces n {/eq}. Cuando {eq}m=n {/eq} las llamamos matrices cuadradas. Las entradas de una matriz vienen dadas por {eq}a_{ij} {/eq} donde {eq}ij {/eq} representa la posición de la entrada en el arreglo. La matriz adjunta es la matriz formada por la transposición de las filas y columnas de la matriz de cofactores. La palabra adjunto es ahora menos utilizada en nomenclatura, ya que también puede significar el operador adjunto. Como se indica en la definición, la matriz adjunta se forma tomando la transposición de la matriz de cofactores. La matriz adjunta para una matriz dada {eq}A {/eq} se denota como {eq}Adj(A) {/eq}.
Inversa de matriz ejemplos resueltos
En álgebra lineal, el adjunto o adyacente clásico de una matriz cuadrada A es el transpuesto de su matriz cofactora y se denota por adj(A).[1][2] También se conoce ocasionalmente como matriz adjunta,[3][4] o “adjunto”,[5] aunque este último término hoy en día normalmente se refiere a un concepto diferente, el operador adjunto que para una matriz es el transpuesto conjugado.
Para más detalle, supongamos que R es un anillo unital conmutativo y A es una matriz n × n con entradas de R. El (i, j)-minor de A, denotado Mij, es el determinante de la matriz (n – 1) × (n – 1) que resulta de borrar la fila i y la columna j de A. La matriz cofactora de A es la matriz n × n C cuya entrada (i, j) es el (i, j) cofactor de A, que es el (i, j)-minor multiplicado por un factor de signo:
El -1 de la segunda fila, tercera columna del adjugado se calculó como sigue. La entrada (2,3) del adjunto es el cofactor (3,2) de A. Este cofactor se calcula utilizando la submatriz obtenida al eliminar la tercera fila y la segunda columna de la matriz original A,
Cómo calcular la matriz adjunta
Teorema H. Una matriz cuadrada A es invertible si y sólo si su determinante es distinto de cero, y su inversa se obtiene multiplicando el adjunto de A por (det A) -1. [Nota: Una matriz cuyo determinante es 0 se dice singular; por tanto, es no singular]. [Nota: Una matriz cuyo determinante es 0 se dice que es singular; por lo tanto, una matriz es invertible si y sólo si es no singular].
donde n es el tamaño de la matriz cuadrada A. Si n = 2, entonces (det A) n-2 = (det A) 0 = 1-ya que det A ≠ 0-lo que implica Adj (Adj A) = A, como se desea. Sin embargo, si n > 2, entonces (det A) n-2 no será igual a 1 para cada valor distinto de cero de det A, por lo que Adj (Adj A) no será necesariamente igual a A. Sin embargo, esta prueba muestra que cualquiera que sea el tamaño de la matriz, Adj (Adj A) será igual a A si det A = 1.
Ejemplo 5: Consideremos el espacio vectorial C 2( a, b) de funciones que tienen una segunda derivada continua en el intervalo ( a, b) ⊂ R. Si f, g, y h son funciones en este espacio, entonces el siguiente determinante,
Las funciones f, g y h son linealmente independientes si los únicos escalares c 1, c 2 y c 3 que satisfacen la ecuación son c 1 = c 2 = c 3 = 0. Una forma de obtener tres ecuaciones para resolver las tres incógnitas c 1, c 2 y c 3 es diferenciar (*) y luego volver a diferenciarla. El resultado es el sistema