Función matriz inversa adjunta traspuesta

Propiedades de la matriz inversa

El adjunto de una matriz es uno de los métodos más sencillos para calcular la inversa de una matriz. Matriz adjunta es otro término utilizado para referirse a la matriz adjunta en álgebra lineal. Una matriz adjunta es especialmente útil en aplicaciones en las que no se puede utilizar directamente una matriz inversa.

El adjunto de una matriz se obtiene tomando la transpuesta de los elementos cofactores de la matriz dada. En este artículo, vamos a aprender sobre el adjunto de una matriz, su definición, propiedades con ejemplos resueltos.

El adjunto de una matriz B es la transposición de la matriz cofactor de B. El adjunto de una matriz cuadrada B se denota por adj B. Sea B = [\(b_{ij}\)] una matriz cuadrada de orden n. Los tres pasos importantes para encontrar el adjunto de una matriz son:

El adjunto adj(B) de una matriz cuadrada B de orden n x n, puede definirse como el transpuesto de la matriz cofactora. Consideremos la matriz B de 2×2 con los elementos \(b_{11}, b_{12}, b_{21}, b_{22}\), y sus elementos cofactores son \(B_{11}, B_{12}, B_{21}, B_{22}\) respectivamente. A continuación, el adjunto de la fórmula de la matriz es la siguiente:

Matriz adjunta

En álgebra lineal, la matriz adjunta o adjunta clásica de una matriz cuadrada A es la transpuesta de su matriz cofactora y se denota por adj(A)[1][2]. También se conoce ocasionalmente como matriz adjunta,[3][4] o “adjunta”,[5] aunque este último término hoy en día normalmente se refiere a un concepto diferente, el operador adjunto que para una matriz es la transpuesta conjugada.

  Matriz inversa calculo de determinantes por adjuntos

Para más detalle, supongamos que R es un anillo unital conmutativo y A es una matriz n × n con entradas de R. El (i, j)-minor de A, denotado Mij, es el determinante de la matriz (n – 1) × (n – 1) que resulta de borrar la fila i y la columna j de A. La matriz cofactora de A es la matriz n × n C cuya entrada (i, j) es el (i, j) cofactor de A, que es el (i, j)-minor multiplicado por un factor de signo:

El -1 de la segunda fila, tercera columna del adjugado se calculó como sigue. La entrada (2,3) del adjunto es el cofactor (3,2) de A. Este cofactor se calcula utilizando la submatriz obtenida al eliminar la tercera fila y la segunda columna de la matriz original A,

Transposición de una matriz

Teorema H. Una matriz cuadrada A es invertible si y sólo si su determinante es distinto de cero, y su inversa se obtiene multiplicando el adjunto de A por (det A) -1. [Nota: Una matriz cuyo determinante es 0 se dice singular; por tanto, una matriz es invertible si y sólo si es no singular]. [Nota: Una matriz cuyo determinante es 0 se dice que es singular; por lo tanto, una matriz es invertible si y sólo si es no singular].

donde n es el tamaño de la matriz cuadrada A. Si n = 2, entonces (det A) n-2 = (det A) 0 = 1-ya que det A ≠ 0-lo que implica Adj (Adj A) = A, como se desea. Sin embargo, si n > 2, entonces (det A) n-2 no será igual a 1 para cada valor distinto de cero de det A, por lo que Adj (Adj A) no será necesariamente igual a A. Sin embargo, esta prueba muestra que cualquiera que sea el tamaño de la matriz, Adj (Adj A) será igual a A si det A = 1.

  Matriz adjunta 3x3 ejemplos

Ejemplo 5: Consideremos el espacio vectorial C 2( a, b) de funciones que tienen una segunda derivada continua en el intervalo ( a, b) ⊂ R. Si f, g, y h son funciones en este espacio, entonces el siguiente determinante,

donde c = ( c 1, c 2, c 3) T. Un sistema cuadrado homogéneo-como éste-sólo tiene la solución trivial si y sólo si el determinante de la matriz de coeficientes es distinto de cero. Pero si c = 0 es la única solución de (**), entonces c 1 = c 2 = c 3 = 0 es la única solución de (*), y las funciones f, g y h son linealmente independientes. Por tanto,

Calculadora de transposición de matrices de cofactores

Álgebra linealAdemás de (y como parte de) su soporte para matrices multidimensionales, Julia proporciona implementaciones nativas de muchas operaciones de álgebra lineal comunes y útiles que se pueden cargar con el uso de LinearAlgebra. Las operaciones básicas, como tr, det, y inv están soportadas:julia> A = [1 2 3; 4 1 6; 7 8 1].

-0.166924+0.278207im -0.166924-0.278207im Además, Julia proporciona muchas factorizaciones que se pueden utilizar para acelerar problemas como la resolución lineal o la exponenciación de matrices mediante la pre-factorización de una matriz en una forma más adecuada (por razones de rendimiento o memoria) para el problema. Consulte la documentación sobre factorizar para obtener más información. Como ejemplo:julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

  Determinante de una matriz y el de su adjunto

3Aquí, Julia fue capaz de detectar que B es de hecho simétrica, y utilizó una factorización más adecuada. A menudo es posible escribir código más eficiente para una matriz que se sabe que tiene ciertas propiedades, por ejemplo, es simétrica, o tridiagonal. Julia proporciona algunos tipos especiales para que pueda “etiquetar” matrices que tienen estas propiedades. Por ejemplo:julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos y para mostrarte publicidad relacionada con sus preferencias en base a un perfil elaborado a partir de tus hábitos de navegación. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad